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1. INTRODUCTION

There has been a long quest to "nd the closed-form solutions for vibration frequencies and
the buckling loads of non-uniform structures. These have been pioneered 240 years ago by
Euler [1] for the cross-section whose moment of inertia varies as

I(m)"I
0
(a#bm)m, (1)

where I
0

is the moment of inertia at the origin of co-ordinates, m"x/¸ is the non-
dimensional axial co-ordinate, a and b are real numbers, m is the real number, chosen so
that the moment of inertia is a positive quantity. Euler [1] studied two particular cases,
namely m"2 and 4, resulting in solutions in elementary functions, whereas Dinnik [2, 3]
considered also the cases where mO2 or 4, the solution being obtained in terms of Bessel
functions. Dinnik [2, 3] reported some additional exact solutions, including exponentially
varying moments of inertia.

In the discussion that ensued, Tuckerman [4] noted that Engesser [5] gave a way of
obtaining an in"nite number of closed-form solutions. Tuckerman [4] suggested to rewrite
the buckling equation

EI(m) d2=/dm2#P¸2="0 (2)

as

I(m)"!P¸2=/E=A, (3)

where prime denotes di!erentiation with respect to m. Substituting arbitrary function= (m),
that satis"es the boundary conditions, results in the desired variation of the moment of
inertia I (m). Engesser [5] discussed the case of parabolic de#ection

="c¸ (m!m2) (4)

which resulted in the moment of inertia

I(m)"4I
0
(1!m2), (5)
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where I
0

is the moment of inertia in the middle cross-section, with the buckling load being
P
cr
"8EI

0
/¸2.

In this note, we construct an in"nite set of closed-form solutions for two cases of buckling.
The "rst is the Euler's case of buckling of simply supported columns whereas the second is
the clamped-free column under its own weight. We pose a seemingly provocative question:
can a static de-ection curve or a vibration mode of a beam serve as a buckling mode? It is
shown that the reply to this question is a$rmative. The work on vibrating beams is
underway and will be reported in the due course [6].

2. BASIC EQUATIONS

Consider the auxiliary problem of the simply supported uniform beam that is subjected to
a distributed load of the intensity

p(m)"p
0
mn. (6)

The di!erential equation governing the static de#ection w (m) reads

EId4w/dm4"¸4p (m). (7)

Integration and satisfaction of the boundary conditions results in the de#ection

w (m)"
a¸n`4

(n#1)(n#2)(n#3) (n#4)
t
1
(m) (8)

where

t
1
(m)"mn`4!1

6
(n2#7n#12)m3#1

6
(n2#7n#6)m (n"0, 1, 2,2). (9)

We have thus a countable in"nity of functions that can be substituted into equation (3), to
get an in"nite sequence of distributions of elastic modulus, leading to the closed-form
solutions.

3. BUCKLING OF NON-UNIFORM SIMPLY SUPPORTED COLUMNS

Demanding the buckling mode of the non-uniform column to coincide with the static
de#ection t

1
(m) of the uniform beam, we get from equation (3)

I(m)"!P¸2t/EtA. (10)

We introduce a parent moment of inertia I
p
(m) as follows:

I
p
(m)"!t

1
/tA. (11)

Then, equation (10) is rewritten as

I(m)"P¸2I
p
(m)/E. (12)

For the function I
p
(m), we get the following expressions, listed here for the "rst 10 values of n:

n"0: I
p
(m)"(1#m!m2)/12, (13)

n"1: I
p
(m)"7/60!m2/20, (14)
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n"2: I
p
(m)"

1

30 A
4(1#m)

(1#m#m2
!m2B, (15)

n"3: I
p
(m)"

1

42 A
6

1#m2
!m2B, (16)

n"4: I
p
(m)"

1

168 A
25(1#m)

1#m#m2#m3#m4
!3m2B, (17)

n"5: I
p
(m)"

1

72 A
11

1#m2#m4
!m2B, (18)

n"6: I
p
(m)"A14(1#m)N

6
+
i/0

mi!m2BN90, (19)

n"7: I
p
(m)"A52N

3
+
i/0

m2i!3m2BN330, (20)

n"8: I
p
(m)"A21(1#m)N

8
+
i/0

mi!m2BN132, (21)

n"9: I
p
(m)"A25N

4
+
i/0

m2i!m2BN156, (22)

n"10: I
p
(m)"A88(1#m)N

10
+
i/0

mi!3m2BN546. (23)

Figure 1 represents the parent moments of inertia for values n"0, 1, 2, 3 and 4, whereas
Figure 2 portrays the functions for n"5, 6, 7, 8, 9 and 10.

The immediate question arises: what are the buckling loads? To answer the question, we
rewrite equation (12) as

P"EI(m)/¸2I
p
(m). (24)

We substitute I(m) by actual moment of inertia I
a
(m) to get

P"EI
a
(m)/¸2I

p
(m). (25)

Now, consider the actual moment of inertia I
a
(m) as being proportional to the parent

moment of inertia I
p
(m) as

I
a
(m)"cI

p
(m), (26)

where c is the coe$cient of proportionality. Equation (24) becomes

P"cE/¸2 (27)



Figure 1. Parent sti!nesses for the simply supported column under compressive concentrated load, n"0, 1, 2, 3, 4.
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which is the expression for the buckling load. It depends on the arbitrary coe$cient c. Thus,
through choosing c at one's will one can achieve any pre-selected value of buckling load.

4. BUCKLING OF COLUMN UNDER ITS OWN WEIGHT

Consider now the buckling of the column under its own weight. The governing
di!erential equation reads [7]

EId2=/dx2"P
L

x

q
0
[=(u)!=(x)] du, (28)

where q
0

is load intensity. Equation (28) can be rewritten as

I=A"QCP
1

m
= (c) dc!= (m)(1!m)D, (29)

where

Q"q
0
¸3/E. (30)



Figure 2. Parent sti!nesses for the simply supported column under compressive concentrated load, n"5, 6,
7, 8, 9, 10.
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We now resort to the auxiliary problem of the de#ection of the uniform beam under the
transverse load given in equation (6). For the clamped-free beam we get

w (m)"
a¸n`4

(n#1)(n#2)(n#3) (n#4)
t
2
(m), (31)

where

t
1
(m)"mn`4!1

6
(n#2)(n#3)(n#4)m3#1

6
(n#1)(n#3)(n#4)m2, (n"0, 1, 2,2).

(32)

In new circumstances, we introduce the following parent moment of inertia:

I
p
(m)"CP

1

m
t (c) dc!t (m)(1!m)DNtA. (33)

For various n, the parent moments of inertia read

n"0: I
p
(m)"(3#6m!6m2#2m3)/30, (34)

n"1: I
p
(m)"(26#52m!42m2#4m3#5m4)/120(2#m), (35)
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n"2: I
p
(m)"

71#142m!102m2#4m3#5m4#6m5
210(3#2m#m2)

, (36)

n"3: I
p
(m)"

155#310m!207m2#4m3#5m4#6m5#7m6

336(4#3m#2m2#m3)
, (37)

n"4: I
p
(m)"

295(1#2m)!375m2#4m3#5m4#6m5#7m6#8m8
504(5#4m#3m2#2m3#m4)

, (38)

n"5: I
p
(m)"

511(1#12m)!627m2#4m3#5m4#6m5#7m6#8m8#9m8

720(6#5m#4m2#3m3#2m4#m5)
. (39)

Figure 3 depicts the parent moment of inertia for values n"0, 1, 2, 3, 4 and 5, while
Figure 4 gives a dependence of I

p
as a function of m, for n taking values between 6 and 10.

We are again confronted with the question on the buckling load evaluation. In view of
de"nition (30), and substituting I(m)"I

a
(m), equation (28) can be rewritten for the buckling

intensity as

Q"q
0
¸3/E"I

a
(m)/I

p
(m). (40)
Figure 3. Parent sti!nesses for the clamped-free column under its own weight, n"0, 1, 2, 3, 4.



Figure 4. Parent sti!ness of the clamped-free column under its own weight, n"5, 6, 7, 8, 9, 10.
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We choose the actual moment of inertia I
a
(m) to be proportional to I

p
(m),

I
a
(m)"dI

p
(m), (41)

where d is the coe$cient of proportionality. Equation (40) takes the form

q
0
"dE/¸3. (42)

Thus the buckling load can be made arbitrary by the proper choice of the parameter d.

5. VIBRATION MODE OF AN UNIFORM BEAM AS A BUCKLING MODE
OF A NON-UNIFORM COLUMN

Since the static de#ections can serve as the buckling modes, it is natural to ask if vibration
mode of an uniform beam can serve in such a capacity too. For the clamped-free uniform
beam the fundamental vibration mode reads [8]:

t (m)"sinb
1
m!sinhb

1
m!r

1
(cosb

1
m!coshb

1
m), (43)
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where

r
1
"(sinb

1
#sinhb

1
)/(cosb

1
#coshb

1
),

b
1
"1)8751040687119611664453082410782141625701117335311. (44)

The reason for the extreme accuracy for b
1

will be explained later. The parameter b
1

satis"es the characteristic equation 1#cos(b
1
)cosh(b

1
)"0. The calculation of the parent

moment of inertia with this function, via equation (33) results in

I
p
(m)"

A

b
1
M

!(1!m)
B

b2
1
C

, (45)

where

A"!M[cos(b
1
)]2#2 cos(b

1
)cosh(b

1
)#[cosh(b

1
)]2#[sin(b

1
)]2![sinh(b

1
)]2

!2 cos(b
1
)cosh(mb

1
)!cos(mb

1
)cosh(b

1
)!cosh(b

1
)cosh(mb

1
)

!sin(mb
1
)sinh(b

1
)#sinh(b

1
)sinh(mb

1
)N.

B"sin(mb
1
)!sinh(mb

1
)!

[sin(b
1
)#sinh(b

1
)][cos(mb

1
)!cosh(mb

1
)]

M
, (46)

C"!Csin(mb
1
)#sinh(mb

1
)!

[sin(b
1
)#sinh(b

1
)][cos(mb

1
)!cosh(mb

1
)]

M D ,

M"cos(b
1
)#cosh(b

1
).

Again, using equation (40).

Q"q
0
¸3/E"I

a
(m)/I

p
(m), (47)

and choosing the actual moment of inertia

I
a
(m)"uI

p
(m), (48)

we arrive at the buckling intensity

q"uE/¸3. (49)

Due to arbitrariness of the positive parameter u, the buckling parameter can be made as
large as desired. Figure 5 depicts the parent moment of inertia: it should be borne in mind
that for the accurate portrayal of it, there is a need of extreme accuracy for the parameter b

1
,

which is given in equation (44) with 50 signi"cant digits. Otherwise, the parent inertial
moment "gure may present a seeming discontinuity in the vicinity of m"1.

6. AXIALLY DISTRIBUTED NON-UNIFORM LOAD

Consider now the case studied by Dinnik [9] in terms of Bessel functions. The column is
under axially distributed load proportional to m t, where t is a positive integer. We utilize
equation (28) with

q (x)"q
0
(x/¸)t. (50)



Figure 5. Parent sti!ness of the vibrating non-homogeneous column with vibration mode of the uniform beam
serving as a buckling mode of the non-uniform column.
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Instead of equation (28) we have

Id2w/dx2"q
0 P

L

x
A
u

¸B
t
[=(u)!=(x)] du

"q
0 P

L

x
A
u

¸B
t
=(u) du!

q
0
=(x)

t#1 A¸!

xt`1

¸t B.
(51)

With u"c¸ and m"x/¸, equation (51) is rewritten as

Id2w/dx2"QCP
1

m
ct= (c) dc!

= (m)

t#1
(1!mt`1)D. (52)

Introducing=(m)"t (m) and de"ning the parent moment of inertia as

I
p
(m)"CI0(m)!

t (m)

t#1
(1!mt`1)DNtA, I

0
(m)"P

1

m
ctt (c) dc, (53)
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we get

I(m)"QI
p
(m). (54)

Choosing the actual moment of inertia I (m),I
a
(m) as being proportional to I

p
(m),

I
a
(m)"jI

p
(m), (55)

we obtain

q
0
"Ej/¸3. (56)

For t we again use the vibration modes of the uniform clamped-free beams (32). The
function I

0
(m) in equation (53) reads

I
0
(m)"P

1

m
ctt (c) dc"

R
0
#R

1
m3`t#R

2
m4`t#R

3
m5`n`t

6(3#t)(4#t) (5#n#t)
, (57)

where

R
0
"432#822n#495n2#114n3#9n4#174t#18t2#2n4t#34n3t#2n3t2

#175n2t#15n2t2#317nt#31nt2,
Figure 6. Parent sti!nesses for the clamped-free column under non-uniform axially distributed load, t"0, 1,
2,2, 5 and n"1.
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R
1
"!(720#1284n#708n2#156n3#12n4#324t#36t2#3n4t#51n3t#3n3t2

#273n2t#24n2t2#549nt#57nt2), (58)

R
2
"360#462n#213n2#42n3#3n4#192t#24t2#n4t#n4t#17n3t#n3t2

#98n2t#9n2t2#232nt#26nt2,

R
3
"!(72#42t#6t2).

The analytical expressions obtained by the computerized symbolic algebraic code Maple
when using as t the vibration mode of the uniform clamped-free beam are not reproduced
here, due to their length. Some parent inertial moments are depicted in Figure 6 for various
values of t (t"0, 1, 2,2, 5) and n"1, while Figure 7 portrays I

p
(m) for n"2. Figure 8

presented some parent inertial moment for various values of t (t"1, 2,2, 5) when we use
for t the vibration modes of the uniform clamped-free beams (43).

7. CONCLUSION

We obtained several in"nite series of closed-form solutions for the buckling loads of
non-uniform columns. On the one hand, using in"nite number of static de#ections given in
Figure 7. Parent sti!nesses for the clamped-free column under non-uniform axially distributed load, t"0, 1,
2,2, 5 and n"2.



Figure 8. Parent sti!nesses for the vibrating non-homogeneous column with vibration mode of the uniform
beam, t"1, 2,2, 5.
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equation (8), we arrived at the in"nite number of moments of inertia that lead to the
postulated displacement, for the simply supported columns.

On the other hand, for the clamped-free columns, subjected to their own weight, an
in"nite number of closed-form solutions were obtained by using the postulated mode
shapes in equation (32).

We also showed that the vibration mode of the uniform cantilever in equation (43) can
serve as the exact buckling mode of the column under its own weight. For the column under
axially distributed load proportional to axial co-ordinate in arbitrary positive power, we
obtained, on the one hand, in"nite number of closed-form solutions for any integer value of
t on the other hand, an in"nite number of solutions has been found for any n in equation
(57) at any "xed value of t. A remarkable conclusion is that all solutions were obtained in
exact closed-form manner. Moreover, the derived solutions appear to be attractive due to
their simplicity. The present work provides numerous new exact closed-form solutions, in
addition to those reported by Tuckerman [4], Duncan [10] and Elishako! and Rollot [11].
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